Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Humanit Soc Sci Commun ; 10(1): 254, 2023.
Article in English | MEDLINE | ID: covidwho-2326017

ABSTRACT

Higher education students are frequently required to assess lecturers with a convenient, fast, and anonymous learning management system. Following the coronavirus disease 2019 (COVID-19) pandemic outbreak, Universiti Teknologi MARA Malaysia (UiTM) adopted a remote teaching and learning approach. This study examined how lecturers' professionalism, course impression, and facilitating conditions at UiTM affected undergraduate and graduate students' remote learning pre- and mid-pandemic. The higher prediction accuracy of the model demonstrated that students' remote learning activities were highly related to lecturers' professionalism, course impression, and facilitating conditions. The structural model demonstrated that the t-statistics of all measurement variables were significant at 1%. The strongest predictor of students' enjoyment of remote learning pre- and mid-pandemic was lecturers' professionalism. In the importance-performance matrix, lecturers' professionalism was in the quadrant for 'keep up the good work'. Facilitating conditions and course impression did not require further improvement even during the pandemic. The influence of remote learning was demonstrated in the students' graduation rates and grades. The results also presented theoretical and practical implications for the UiTM hybrid learning plan post-pandemic.

2.
PLoS One ; 18(4): e0284301, 2023.
Article in English | MEDLINE | ID: covidwho-2306376

ABSTRACT

The world has witnessed of many pandemic waves of SARS-CoV-2. However, the incidence of SARS-CoV-2 infection has now declined but the novel variant and responsible cases has been observed globally. Most of the world population has received the vaccinations, but the immune response against COVID-19 is not long-lasting, which may cause new outbreaks. A highly efficient pharmaceutical molecule is desperately needed in these circumstances. In the present study, a potent natural compound that could inhibit the 3CL protease protein of SARS-CoV-2 was found with computationally intensive search. This research approach is based on physics-based principles and a machine-learning approach. Deep learning design was applied to the library of natural compounds to rank the potential candidates. This procedure screened 32,484 compounds, and the top five hits based on estimated pIC50 were selected for molecular docking and modeling. This work identified two hit compounds, CMP4 and CMP2, which exhibited strong interaction with the 3CL protease using molecular docking and simulation. These two compounds demonstrated potential interaction with the catalytic residues His41 and Cys154 of the 3CL protease. Their calculated binding free energies to MMGBSA were compared to those of the native 3CL protease inhibitor. Using steered molecular dynamics, the dissociation strength of these complexes was sequentially determined. In conclusion, CMP4 demonstrated strong comparative performance with native inhibitors and was identified as a promising hit candidate. This compound can be applied in-vitro experiment for the validation of its inhibitory activity. Additionally, these methods can be used to identify new binding sites on the enzyme and to design new compounds that target these sites.


Subject(s)
COVID-19 , Peptide Hydrolases , Humans , SARS-CoV-2 , Molecular Docking Simulation , Endopeptidases , Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , Molecular Dynamics Simulation
3.
Front Cell Infect Microbiol ; 11: 690621, 2021.
Article in English | MEDLINE | ID: covidwho-1523677

ABSTRACT

The coronavirus disease (COVID-19) is caused by a positive-stranded RNA virus called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), belonging to the Coronaviridae family. This virus originated in Wuhan City, China, and became the cause of a multiwave pandemic that has killed 3.46 million people worldwide as of May 22, 2021. The havoc intensified with the emergence of SARS-CoV-2 variants (B.1.1.7; Alpha, B.1.351; Beta, P.1; Gamma, B.1.617; Delta, B.1.617.2; Delta-plus, B.1.525; Eta, and B.1.429; Epsilon etc.) due to mutations generated during replication. More variants may emerge to cause additional pandemic waves. The most promising approach for combating viruses and their emerging variants lies in prophylactic vaccines. Several vaccine candidates are being developed using various platforms, including nucleic acids, live attenuated virus, inactivated virus, viral vectors, and protein-based subunit vaccines. In this unprecedented time, 12 vaccines against SARS-CoV-2 have been phased in following WHO approval, 184 are in the preclinical stage, and 100 are in the clinical development process. Many of them are directed to elicit neutralizing antibodies against the viral spike protein (S) to inhibit viral entry through the ACE-2 receptor of host cells. Inactivated vaccines, to the contrary, provide a wide range of viral antigens for immune activation. Being an intracellular pathogen, the cytotoxic CD8+ T Cell (CTL) response remains crucial for all viruses, including SARS-CoV-2, and needs to be explored in detail. In this review, we try to describe and compare approved vaccines against SARS-CoV-2 that are currently being distributed either after phase III clinical trials or for emergency use. We discuss immune responses induced by various candidate vaccine formulations; their benefits, potential limitations, and effectiveness against variants; future challenges, such as antibody-dependent enhancement (ADE); and vaccine safety issues and their possible resolutions. Most of the current vaccines developed against SARS-CoV-2 are showing either promising or compromised efficacy against new variants. Multiple antigen-based vaccines (multivariant vaccines) should be developed on different platforms to tackle future variants. Alternatively, recombinant BCG, containing SARS-CoV-2 multiple antigens, as a live attenuated vaccine should be explored for long-term protection. Irrespective of their efficacy, all vaccines are efficient in providing protection from disease severity. We must insist on vaccine compliance for all age groups and work on vaccine hesitancy globally to achieve herd immunity and, eventually, to curb this pandemic.


Subject(s)
COVID-19 , Pandemics , COVID-19 Vaccines , Humans , Pandemics/prevention & control , SARS-CoV-2 , Vaccines, Inactivated
4.
Front Genet ; 12: 693916, 2021.
Article in English | MEDLINE | ID: covidwho-1295633

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China, was triggered and unfolded quickly throughout the globe by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The new virus, transmitted primarily through inhalation or contact with infected droplets, seems very contagious and pathogenic, with an incubation period varying from 2 to 14 days. The epidemic is an ongoing public health problem that challenges the present global health system. A worldwide social and economic stress has been observed. The transitional source of origin and its transport to humans is unknown, but speedy human transportation has been accepted extensively. The typical clinical symptoms of COVID-19 are almost like colds. With case fatality rates varying from 2 to 3 percent, a small number of patients may experience serious health problems or even die. To date, there is a limited number of antiviral agents or vaccines for the treatment of COVID-19. The occurrence and pathogenicity of COVID-19 infection are outlined and comparatively analyzed, given the outbreak's urgency. The recent developments in diagnostics, treatment, and marketed vaccine are discussed to deal with this viral outbreak. Now the scientist is concerned about the appearance of several variants over the globe and the efficacy of the vaccine against these variants. There is a need for consistent monitoring of the virus epidemiology and surveillance of the ongoing variant and related disease severity.

5.
Med Drug Discov ; 10: 100089, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1176863

ABSTRACT

Coronavirus disease (COVID-19) is a global pandemic. The COVID-19 outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has overloaded healthcare systems that need medication to be rapidly established, at least to minimize the incidence of COVID-19. The coinfection with other microorganisms has drastically affected human health. Due to the utmost necessity to treat the patient infected with COVID-19 earliest, poor diagnosis and misuse of antibiotics may lead the world where no more drugs are available even to treat mild infections. Besides, sanitizers and disinfectants used to help minimize widespread coronavirus infection risk also contribute to an increased risk of antimicrobial resistance. To ease the situation, zinc supplements' potentiality has been explored and found to be an effective element to boost the immune system. Zinc also prevents the entry of the virus by increasing the ciliary beat frequency. Furthermore, the limitations of current antiviral agents such as a narrow range and low bioavailability can be resolved using nanomaterials, which are considered an important therapeutic alternative for the next generation. Thus, the development of new antiviral nanoagents will significantly help tackle many potential challenges and knowledge gaps. This review paper provides profound insight into how COVID-19 and antimicrobial resistance (AMR) are interrelated and the possible implications and current strategies to fight the ongoing pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL